Total No. of Printed Pages-12

4 SEM TDC STSH (CBCS) C 8 (N/O)

2024

(May/June)

STATISTICS

(Core)

Paper: C-8

(Statistical Inference)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 55
Pass Marks: 22

Time: 3 hours

- 1. Choose the correct answer from the following 1×6=6 alternatives:
 - (a) In case of random sample from Cauchy population,
 - (i) sample mean is consistent estimator of population mean
 - (ii) sample median is consistent estimator of population mean
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)

24P/1225

(Turn Over)

- (b) If the estimator T_n converges to $\gamma(\theta)$ in probability, then the estimator T_n is
 - (i) consistent estimator
 - (ii) efficient estimator
 - (iii) sufficient estimator
 - (iv) None of the above
- The power of a critical region is
 - (i) $P\{\text{rejecting } H_0 \text{ when } H_1 \text{ is true}\}$
 - (ii) $P\{\text{rejecting } H_0 \text{ when } H_0 \text{ is true}\}$
 - (iii) $P\{\text{accepting } H_0 \text{ when } H_1 \text{ is true}\}$
 - (iv) None of the above
- (d) If T_0 and T_1 are minimum variance unbiased estimators, then
 - (i) $T_0 > T_1$
 - (ii) $T_0 < T_1$
 - (iii) $T_0 = T_1$
 - (iv) None of the above
- Maximum likelihood estimators are (i) consistent and sufficient statistics functions of
 - (ii) asymptotically normal and efficient
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)

- If L_0 and L_1 are the likelihood functions of a sample from a population with p.d.f. $f(x, \theta)$ under H_0 and under H_1 respectively, then the likelihood ratio is calculated as
 - (i) $\lambda = \frac{L_1}{L_0}$
 - (ii) $\lambda = \frac{L_0}{L_1}$
 - (iii) $\frac{L_1 + L_0}{L_1}$
 - (iv) $\frac{L_1 + L_0}{L_0}$
- 2. Answer the following questions in brief:

2×7=14

- Show that in estimating the mean of a normal population $N(\mu, \sigma^2)$, the sample mean is more efficient estimator than the sample median and determine the efficiency of sample mean.
- Write a note on Bayes estimator. (b)
- State the properties of likelihood ratio (c) test.

(4)

- (d) What are the two aspects of a general sequential procedure?
- (e) Compare the method of minimum chi-square with maximum likelihood estimation.
- Mhat do you understand by best critical region?
- Define operating characteristic function of a test.
- 3. State the Cramer-Rao inequality and define MVB estimator. Let $X_1, X_2, ..., X_n$ be a random sample drawn from normal population $N(\mu, \sigma^2)$, where σ^2 is known. Find the Cramer-Rao lower bound for μ . Also find the MVB estimator of μ . 2+2+4+2=10

OR

- **4.** (a) If T_n is a consistent estimator of θ_n and $f(\theta_n)$ is a continuous function of θ_n , then prove that $f(T_n)$ is a consistent estimator of $f(\theta_n)$.
 - (b) Give the statement of factorization theorem. Let $X_1, X_2, ..., X_n$ be a random sample from a normal population $f(\mu, \sigma^2)$. Find the sufficient statistic for variance when u is known.

5. (a) Write a property of method of moments. In a random sampling from a normal population $N(\mu, \sigma^2)$, find the method of moments estimators of the mean μ and variance σ^2 .

Or

(b) A random sample of size n is drawn from an exponential distribution

$$f(x) = y_0 e^{-\frac{x-\beta}{\sigma}}; \quad \beta < x < \infty, \quad \sigma > 0$$

likelihood maximum the Find estimators of β and σ .

Prove that the power of a best critical region for testing a simple hypothesis against a simple alternative is never less than its size.

Or

Let p be the probability that a coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I error and power of the test.

5

5

5

24P/1225

7. (a) Let the random variables $X_1, X_2, ..., X_n$ are i.i.d. with the common p.d.f. $f(x, \theta)$. To test the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta = \theta_1$, develop an SPRT.

5

(b) Obtain SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where θ is the mean of a normal distribution with known variance.

5

5

OR

- 8. A random variable X has the rectangular distribution between 0 and θ . Obtain an SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where $\theta_0 < \theta_1$. Also find the OC and ASN functions.
- 9. Derive Neyman-Pearson likelihood ratio test for testing a hypothesis.

(Old Course)

Full Marks: 50
Pass Marks: 20

Time: 2 hours

- 1. Choose the correct answer from the following alternatives:
 - (a) In case of random sample from Cauchy population,
 - (i) sample mean is consistent estimator of population mean
 - (ii) sample median is consistent estimator of population mean
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)
 - (b) If the estimator T_n converges to $\gamma(\theta)$ in probability, then the estimator T_n is said to be
 - (i) consistent estimator
 - (ii) efficient estimator
 - (iii) sufficient estimator
 - (iv) None of the above

- The power of a critical region is defined as
 - (i) $P\{\text{rejecting } H_0 \text{ when } H_1 \text{ is true}\}$
 - (ii) $P\{\text{rejecting } H_0 \text{ when } H_0 \text{ is true}\}$
 - (iii) $P\{\text{accepting } H_0 \text{ when } H_1 \text{ is true}\}$
 - (iv) None of the above
- (d) If T_0 and T_1 are minimum variance unbiased estimators, then
 - (i) $T_0 > T_1$
 - (ii) $T_0 < T_1$
 - (iii) $T_0 = T_1$
 - (iv) None of the above
- Maximum likelihood estimators are and functions sufficient statistics of
 - (ii) asymptotically normal and efficient
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)
- If L_0 and L_1 are the likelihood functions of a sample from a population with p.d.f. $f(x, \theta)$ under H_0 and under H_1 respectively, then the likelihood ratio is
 - (i) $\lambda = \frac{L_1}{L_0}$

(ii)
$$\lambda = \frac{L_0}{L_1}$$

(iii)
$$\frac{L_1 + L_0}{L_1}$$

- (iv) $\frac{L_1 + L_0}{L_0}$
- 2. Answer the following questions in brief: $2 \times 7 = 14$
 - Show that in estimating the mean of a normal population $N(\mu, \sigma^2)$, the sample mean is more efficient estimator than the sample median and determine the efficiency of sample mean.
 - (b) Let $x_1, x_2, ..., x_n$ be a random sample of n observations from a population having p.d.f. $f(x, \theta)$, $\theta \in S$, where S is the parametric space. Define the Bayes estimator of θ .
 - State the properties of likelihood ratio (c) test.
 - What are the two aspects of a general sequential procedure?
 - Compare the method of minimum chi-square with maximum likelihood estimation.

- What do you understand by best critical region?
- Define operating characteristic function of a test.
- 3. State the Cramer-Rao inequality and define MVB estimator. Let $X_1, X_2, ..., X_n$ be a random sample drawn from normal population $N(\mu, \sigma^2)$, where σ^2 is known. Find the Cramer-Rao lower bound for μ . Also find the MVB estimator for μ . 2+2+4+2=10

OR

- **4.** (a) If T_n is a consistent estimator of θ_n and $f(\theta_n)$ is a continuous function of θ_n , then prove that $f(T_n)$ is a consistent estimator of $f(\theta_n)$.
 - Give the statement of factorization theorem. Let $X_1, X_2, ..., X_n$ be a random sample from a normal population $f(\mu, \sigma^2)$. Find the sufficient statistic for variance when μ is known.
- Write a property of method of moments. In a random sampling from a normal population $N(\mu, \sigma^2)$, find the method of moments estimators of the mean μ and variance σ^2 . 1+4=5

Or

(b) A random sample of size n is drawn from an exponential distribution

$$f(x) = y_0 e^{-\frac{x-\beta}{\sigma}}; \quad \beta < x < \infty, \quad \sigma > 0$$

likelihood maximum the Find estimators of β and σ .

Prove that the power of a best critical region for testing a simple hypothesis against a simple alternative is never less than its size.

Or

- Let p be the probability that a coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I error and power of the test.
- Let the random variables $X_1, X_2, ..., X_n$ are i.i.d. with the common p.d.f. $f(x, \theta)$. To test the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta = \theta_1$, develop an SPRT.

5

5

5

6

(b) Obtain SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where θ is the mean of a normal distribution with known variance.

5

OR

8. A random variable X has the rectangular distribution between 0 and θ . Obtain an SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where $\theta_0 < \theta_1$. Also find the OC and ASN functions.
