4 SEM TDC GEMT (CBCS) 4.1/4.2/4.3

2024

(May/June)

MATHEMATICS

(Generic Elective)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

All symbols have their usual meanings

Paper: GE-4.1

(Algebra)

UNIT-1

- (a) State True or False:
 Addition of natural numbers in binary composition is not associative.
 - (b) Find the elements of U(20).
 - (c) Show that the subset {1, -1, i, -i} of the complex numbers is an Abelian group under complex multiplication.

1

1

5

Or	generator.
Show that {1, 2, 3}	under multiplication a group but that nultiplication modulo

		UNIT—2	
3.	٠	State True or False: Order of a cyclic group is not equal to the order of its generator.	1
	(b)	Write all the left cosets of H in G if $G = S_3$ and $H = \{1, (13)\}.$	3
	(c)	Prove that a non-empty subset H of a group G is a subgroup of G iff $a, b \in H \Rightarrow ab^{-1} \in H$.	5
	(d)	Show that the centre of a group G is a subgroup of G .	5
		Prove that a subgroup of a cyclic group is cyclic.	
4.	(a)	Prove that every subgroup of an Abelian group is normal.	2
	(b)	State and prove Lagrange's theorem.	4
	(c)	Prove that every quotient group of a cyclic group is cyclic.	4

24P/1326

	Prove that if p is a prime number,
	then any group G of order $2p$ has a normal subgroup of order p .

Or

Let G be a group and let H be a normal subgroup of G. Prove that the set $G/H = \{ah : a \in G\}$ is a group under the operation (aH)(bH) = abH.

UNIT_2

5. (a) Define zero divisor.

(b) State True or False:
 A commutative ring R is called an integral domain if R has zero divisor.

- (c) Prove that the set $R = \{0, 1, 2, 3, 4, 5\}$ is addition and multiplication modulo 6
- (d) Prove that a ring R is without zero divisor if and only if the cancellation

Or

Prove that every field is an integral domain.

6. (a) Define division ring.

(b) Show that a ring of order p^2 (p is a prime) may not be commutative.

(c) Show that the set of numbers of the form $a+b\sqrt{2}$, with a and b as rational numbers, is a field.

(d) Show that, a non-empty subset S of a ring R is a subring of R iff $x, y \in S \Rightarrow xy, x-y \in S$.

Or

Show that a commutative ring with unity is a field if it has no proper ideal.

24P/1326

(Continued)

4

1

1

5

5

1

3