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MATHEMATICS
( Generic Elective )

Full Marks : 80
Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks
for the questions

All symbols have their usual meanings

Paper : GE—4.1
( Algebra )
UNIT—1
1. (a) State True or False : 1
Addition of natural numbers in binary
composition is not associative.
(b) Find the elements of U(20). 1
(¢ Show that the subset {1, -1, b i} of
the complex numbers is an Atfehan
group under complex multiplication. 5
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UNIT—2 =k
3. (a) State True or False 1
- Order of a cyclic group is not equal to the
order of its generator e
() Write all t.he left cosets of H in G if
G=S; and H= {1, 13)}. 3
(c) Prove that a non-empty subset H of a
group G is a subgroup of G iff
a be H=>ab™ le H. 5
(d) Show that the centre of a group Gis
a subgroup of G. 5
: Or
Prove that a subgroup of 2 cyclic group
is cyclic.
4. (a) Prove that every subgroup of an
Abelian group is normal. 2
(b) State and prove Lagrange’s theorem. 4
() Prove that every quotient group of 2
cyclic group is cyclic. 4
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(d) Prove that ;
at if : .
then any grou;}: g' ";_1 Plc‘ilme number, 6. (a) Define division ring. 1
of order 2p h
n as a
ormal subgroup of order p. d (b) Show that a: ring of order-p? (pis a
' o,- prime) may not be commutative. 3
Let G be 2 | ' e set ers of the
group and let g (c) Show that the set of numbers of the
Zubgl‘oup of G. Prove thbi a normal form a+bv2, with a and b'as rational
o /H={ah:ac G}isa grou:u tfile ;ft numbers, . is a field. . 4
peration ndaer c ’ - : e IS o
(aH)(bH) = apy. " (d) Show that, a non-empty subset S of
" a ring R is a subring of R iff
i, yeS=>xy Xx=YyeS. 4
UNrm- o
S. (@ Define s Show that a commutative ring with unity
zero divisor, is a field if it has no proper ideal.
() State True or ‘Fag, . | ‘
f\ commutative )
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Or -
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domain. Mtegeyy
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