Total No. of Printed Pages-5

6 SEM TDC DSE PHY (CBCS) 1 (H)

2024

(May)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

(Nuclear and Particle Physics)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Choose the correct option from the following:

1×5=5

- (a) The radii of two nuclei with mass numbers 1 and 8 are in the ratio
 - (i) 1:8
 - (ii) 8:1
 - (iii) 1:2
 - (iv) 2:1

- (b) The average binding energy of a nucleus is of the order of
 - (i) 8 eV
 - (ii) 8 keV
 - (iii) 8 MeV
 - (iv) None of the above
- On emitting an α -particle and a β-particle, the mass number and atomic number of a nucleus $_{n}X^{m}$ change to
 - (i) m-4, n
 - (ii) m-4, n-1
 - (iii) m-3, n+1
 - (iv) m-3, n-1
- A kaon is a ____ and a proton is a
 - (i) fermion, boson
 - (ii) fermion, fermion
 - (iii) boson, fermion
 - (iv) boson, boson
- Isospins for a proton and a neutron are
 - (i) $\frac{1}{2}$ and $-\frac{1}{2}$ respectively
 - (ii) $-\frac{1}{2}$ and $\frac{1}{2}$ respectively
 - (iii) both $\frac{1}{2}$
 - (iv) None of the above

≥.	(a)	What is separation energy of a nucleon?	
----	-----	---	--

- Derive an expression for nuclear magnetic dipole moment.
- What are 'independent particle model' 3. (a) and 'strong interaction model' in connection with a nucleus?
 - Discuss the evidences of a shell structure in a nucleus. Give a brief description of the shell model. 3+3=6
 - Bethe-Weizsacker Write down the semi-empirical mass formula. Describe briefly the significance of each term of 1+4=5 the formula.
- Compare the energy spectra of alpha **4.** (a) and beta rays.

Or

Give a qualitative description of the Gamow's theory of alpha decay. What is 3+1=4Gamow factor?

- (b) Why is gamma ray assumed to be emitted from inside the nucleus?
- Explain the term 'internal conversion' in connection with gamma radiation.

2

2

3

2

- 5. (a) What are the conservation laws to be followed by a nuclear reaction?
 - (b) What is nuclear cross-section? Derive an expression for nuclear cross-section.

 What is its unit? 1+3+1=5
 - (c) What are resonance reactions?
- 6. Write short notes on any two of the following: $4 \times 2 = 8$
 - (a) Bethe-Bloch formula
 - (b) Gamma ray interaction through matter
 - (c) Compton effect
- 7. Describe the construction and working of a GM counter. What are dead time and recovery time? What is quenching? How is it achieved?

 4+2+1+2=9

Or

What is a semiconductor detector? Name a few types of semiconductor detector. What are its advantages over a gas-filled detector? Describe any one type of semiconductor detector.

1+2+2+4=9

8. Give a brief description of the working of a linear accelerator. Derive a relation between frequency of the applied a.c. voltage and the length of a conducting cylinder.

3+2=5

- 9. (a) Classify elementary particles on the basis of standard model.
 - (b) Describe briefly the term 'strange particles'. What is strangeness quantum number S? What are the values of S for omega and lambda particles? 2+1+2=5
 - (c) What is CPT invariance?
 - (d) Check whether Baryon number and strangeness are conserved in the following reactions: 2×3=6

(i)
$$\pi^+ + n \rightarrow \Lambda^0 + K^+$$

(ii)
$$\pi^+ + n \to K^0 + K^+$$

(iii)
$$\pi^+ + n \rightarrow \pi^- + p$$

Or

Describe the conservation laws to be followed specifically in a strong interaction. In which interaction is parity violated?

5+1=6

**