Total No. of Printed Pages-5

6 SEM TDC PHYH (CBCS) C 13

2024

(May)

PHYSICS

(Core)

Paper: C-13

(Electromagnetic Theory)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option of any *five* of the following: 1×5=5
 - (a) The value of wave impedance in free space is
 - (i) 390 ohm
 - (ii) 480 ohm
 - (iii) 377 ohm
 - (iv) 230 ohm

- The Brewster's angle for light incident on glass with refractive index 1.6 is
 - (i) 90°
 - (ii) 70°
 - (iii) 58°
 - (iv) None of the above
- Nicol prism is made up of
 - (i) calcite crystal
 - (ii) quartz
 - (iii) mica
 - (iv) nickel
- The angle of rotation depends upon
 - (i) length of the substance
 - (ii) concentration of the substance
 - (iii) Both (i) and (ii)
 - (iv) None of the above
 - Which of the following cannot occur in a hollow waveguide?
 - (i) TM wave
 - (ii) TE wave
 - (iii) TEM wave

(tu) All of the above

- Which of the following is wrong?
 - (i) $n \propto \sqrt{\varepsilon_r}$
- (ii) $\frac{\varepsilon}{B} = c$
 - (iii) $n \propto \frac{1}{\sqrt{\varepsilon_r}}$
 - (iv) Div $\overrightarrow{B} = 0$
- 2. Answer any five of the following:
 - What are electromagnetic potentials?
 - Determine the numerical aperture of a step-index fibre when the core and indices refractive are cladding respectively 1.5 and 1.4.
 - Classify the optically active substances with examples.
 - the expression for Obtain an (d) electromagnetic energy density in free space.
 - What is optic axis? Give an example of a crystal having two optic axes. 1+1=2
 - Find the reflection and transmission coefficients for normal incidence in glass-air interface. Given refractive index of glass is 1.5.

 (a) State the Poynting theorem and write its mathematical form. Hence discuss the physical significance of the theorem.

1+1+2=4

Or

Explain how Maxwell modified Ampere's equation for electromagnetic field.

- (b) Obtain the boundary conditions for tangential components of electromagnetic field vectors at the interface of two media.

 2+2=4
- 4. (a) Show that electromagnetic waves in free space are transverse in nature.
 - (b) Find an expression for conductivity of ionized region on the basis of propagation of electromagnetic waves through ionized gas.
- 5. Explain the phenomenon of total internal reflection with the help of electromagnetic theory. What are evanescent waves?

 4+2=6

Or

Obtain the Fresnel's equations for non-conducting media when the electric field vector is normal to the plane of incidence.

6. (a) Discuss how circular and elliptical polarization of electromagnetic waves can be obtained. 3+2=5

Or

Describe the action of Nicol prism as analyser with the help of proper diagram.

- (b) Derive the eigenvalue equation for a plane dielectric waveguide.
- 7. Write short notes on any two of the following: 4×2=8
 - (a) Double refraction
 - (b) Laurent's half-shade polarimeter
 - (c) Half-wave plate

-1(Kr-

5

* *