6 SEM TDC DSE BOT (CBCS) 4 (H)

2024

(May)

BOTANY

(Discipline Specific Elective)

(For Honours)

Paper: DSE-4

(Biostatistics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Choose the correct answer of the following: 1×3=3
 - (i) Means of two samples are compared by
 - (1) *t*-test
 - (2) chi-square test
 - (3) correlation

- (ii) Data can be represented in percentage by ?
 - (1) frequency polygon
 - (2) ogive
 - (3) pie diagram

STORES TO THE DEED NOT LOSSES .

- (iii) Which of the following is an example of random sampling?
 - (1) Cluster sampling
 - (2) Quota sampling
 - (3) Purposive sampling
- (b) Answer the following:

1×2=2

- (i) What diagram is used to represent correlation?
- (ii) Who developed regression analysis?
- 2. Write short notes on any two of the following:
 - (a) Variables
 - (b) Mean deviation
 - (c) Range

- 3. Write explanatory notes on any three of the following: 5×3=15
 - (a) Definition, merits and demerits of quartile deviation
 - (b) Null hypothesis and alternative hypothesis
 - (c) Degrees of freedom in statistics
 - (d) Correlation coefficient
 - (e) t-test and its applications
- 4. Compare any two of the following pairs: 5×2=10
 - (a) Correlation and Regression
 - (b) Standard deviation and Standard error
 - (c) Primary data and Secondary data
- 5. What is sampling? Describe different random and non-random sampling techniques in statistics.

 1+3+3=7

Or

What is meant by classification and tabulation of data? Describe how data are classified in different categories. 2+5=7

6. What is chi-square test? Calculate the chi-square (χ^2) value of the given data obtained from a dihybrid cross of pea plants in a field experiment: 2+8=10

Yellow and round seed: 555
Yellow and shrunken seed: 185
Green and round seed: 195
Green and shrunken seed: 65

Or

Write explanatory notes on the following:

5×2=10

- (a) Regression analysis and its applications
- (b) Merits, demerits and applications of geometric mean

and the same states **