3 SEM TDC GEMT (CBCS) GE 3 (A/B/C)

2023

(Nov/Dec)

MATHEMATICS

(Generic Elective)

Paper: GE-3

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Paper: GE-3A

(Real Analysis)

1. (a) Fill in the blank:

A set S is said to be ____ if it is finite or denumerable.

(b) Is the set $E = \{2n : n \in \mathbb{N}\}$ denumerable? Justify.

(c) Prove that every subset of a countable set is countable.

Or

Prove that union of a finite number of countable sets is countable.

1

3

- (d) If $a \in \mathbb{R}$ and $a \neq 0$, then prove that $a^2 > 0$.
- (e) Let S be a non-empty subset of \mathbb{R} that is bounded above and let a be any number in \mathbb{R} . If $a+S=\{a+s:s\in S\}$, prove that $\sup(a+S)=a+\sup S$.

Or

- If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, prove that $\inf S = 0$.
- (f) State and prove the nested interval property.
- 2. (a) State True or False:

 The range of a real sequence may be finite or infinite without ever being the null set.
 - (b) Every convergent sequence is bounded. Is the converse true? Justify.
 - (c) Write the limit point of the sequence $\{S_n\}$, where

$$S_n = (-1)^n \left(1 + \frac{1}{n} \right), \ n \in \mathbb{N}$$

Does the range set have limit points? 2+1=3

(d) State and prove Bolzano-Weierstrass theorem for sequences.

Or

Prove that every bounded sequence with a unique limit point is convergent.

(e) Prove that every Cauchy sequence is bounded. Is the converse true? 3+1=4

(f) Show that the sequence $\{S_n\}$, where

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

cannot converge.

r

Show that the sequence $\{S_n\}$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

is convergent for all $n \in \mathbb{N}$.

- (g) Is the sequence $\{n^2\}$ a Cauchy sequence? Justify.
- 3. (a) State the necessary condition for the convergence of an infinite series.
 - b) State Cauchy's general principle of convergence for series.
 - (c) Prove that the positive term geometric series

$$1+r+r^2+r^3+\cdots$$

converges for r < 1 and diverges to $+\infty$ for $r \ge 1$.

Or

Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

3

3

1

(d) Investigate the behaviour of the series whose nth term is

$$\sin\left(\frac{1}{n}\right)$$

Or

Write the three conditions of Leibnitz test.

- (e) Test the convergence of any two of the following: 5×2=10
 - (i) $\sum_{n=1}^{\infty} \{(n^3+1)^{1/3}-n\}$
 - (ii) $\sum_{n=1}^{\infty} \frac{n^2 1}{n^2 + 1}$
 - (iii) $\frac{2^p}{1^q} + \frac{3^p}{2^q} + \frac{4^p}{3^q} + \cdots$
 - (iv) $\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots$
- 4. (a) Test for uniform convergence of the sequence $\{f_n\}$, where

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
, for all real x

0r

Show that the sequence $\{f_n\}$, where

$$f_n(x) = \frac{x}{1 + nx^2}$$

is uniformly convergent on any closed interval I.

(b) Let $\{f_n\}$ be a sequence of functions such that

$$\operatorname{Lt}_{n\to\infty} f_n(x) = f(x), \ x \in [a,b]$$

and let
$$M_n = \sup_{x \in [a, b]} |f_n(x) - f(x)|$$

Prove that $f_n \to f$ uniformly on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.

Or

Let $\{f_n\}$ be a sequence of differentiable functions on [a, b] such that it converges at least at one point $x_0 \in [a, b]$. If the sequence of differentials $\{f'_n\}$ converges uniformly to G on [a, b], then prove that the sequence $\{f_n\}$ converges uniformly on [a, b] to f and f'(x) = G(x).

- (c) Give an example of a power series.
- (d) If a power series $\sum a_n x^n$ converges for $x = x_0$, then prove that it is absolutely convergent for every $x = x_1$ when $|x_1| < |x_0|$.
- (e) Determine the radius of convergence and the exact interval of convergence of any *one* of the following:

(i)
$$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

(ii)
$$1+\frac{3}{5}x+\frac{3.5}{5.10}x^2+\cdots$$

24P**/467**

(Continued)

(Turn Over)

5

1

Paper: GE-3B

(Cryptography and Network Security)

	•		•
1.	(a)	Write True or False :	1
		Cryptography is used only for encoding the message.	
	(b)	Choose the correct option:	1
	•	In public key encryption, the message is encrypted with the receiver's	
		(t) private key	
		(ii) key pair	
		(iii) symmetric key	
		(iv) public key	
	(c)	Choose the correct option:	1
		In, same key is used for encryption and decryption.	
		(i) symmetric	
		(ii) asymmetric	
		(iii) public key	

	(iii) public key	
,	(iv) None of the above	
(d)	Write True or False :	
•	A message digest is also called hash.	
(0)	What !-	

(e) What is cryptography?

24P**/467**

(Continued)

24P/**467**

	(f)	Explain how the private key symmetric encryption works.	10
		Or	
	<i>(g)</i>	Describe the RSA algorithm.	
	(h)	Illustrate how digital signature works by giving an example.	8
		Or	
	(i)	Briefly explain the SHA-1 algorithm.	
		•	
2.	(a)	Define two IPSEC protocols.	2
	(b)	Briefly explain VPN.	8
		Or	
	(c)	Explain deniel of service attack.	
	(d)	Define the following (any three): 3×3	=9
		(i) IP spoofing	
		(ii) TCP session hijacking	
		(iii) Sequence guessing	
		(iv) Teardrop attack	
		(v) TCP sweeps	
	(e)	Briefly explain how ICMP works.	5

(Turn Over)

3.	(a)	Briefly	explain	SNMP	architecture.	6
----	-----	---------	---------	------	---------------	---

What is firewall? Describe how firewall can be used to protect the network.

2+8=10

Or

(c) Briefly explain the working of secure electronic transaction (SET). 10

Briefly explain the following (any four): 4×4=16

- (i) Intrusion Detection System (IDS)
- (ii) Encapsulating Security Payload (ESP)
- (iii) SSL
- (iv) DSS
- (v) MAC
- (vi) Active attack and passive attack

Paper: GE-3C

(Information Security)

1. Answer any five of the following questions: $2 \times 5 = 10$

- What is data integrity? (a)
- Write the differences between worm and virus in terms of information security.
- What is a transpositional cipher? (c)
- What is an intrusion detection system? (d)
- What is a hash function? (e)
- Write the principles of security. (f)
- trip-wise security What mechanism?
- Compare and contrast substitution and **2.** (a) transposition techniques.
 - Briefly describe any three of 4×3=12 following:
 - (i) Trojan horse
 - (ii) Data availability
 - (iii) MAC
 - (iv) Buffer overflow

		·	
3.	(a)	Differentiate between symmetric and asymmetric encryptions.	5
	(b)	Explain Diffie-Hellman key exchange with both keys. Give example. 5+5=	10
4.	(a)	Briefly explain the functionalities of data encryption standard (DES).	5
	(b)	Consider the following:	
		Plaintext: 'KEY'	
		SECRET KEY: "CRYPTOGRAPHY"	
		Compute the cipher text from the given plain text and key using hill cipher method. Or	5
		What are the properties that digital signature should have?	
5.	(a)	Write the advantages and disadvantages of secret key encryption.	5
	(b)	In an RSA system, the public key of a given user is $e=31$, $n=3599$. What is the private key of this user?	5
6.	(a)	Generate public key and private key in case of RSA algorithm if two prime numbers given are 5 and 7. $(p=5 \text{ and } q=7)$	_
	(b)	Briefly explain the system threats.	5 _.
		directs,	5

7. Explain any two of the following: 5×2=10
(a) Auditing and logging
(b) Public key signature
(c) Program threats
(d) Data integrity