3 SEM TDC CHMH (CBCS) C 6

2023

(Nov/Dec)

CHEMISTRY

(Core)

Paper: C-6

(Organic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following:
 - (a) Hunsdiecker reaction is governed by
 - (i) ionic mechanism
 - (ii) ionic and free radical mechanism
 - (iii) free radical mechanism
 - (iv) None of the above

- (b) When (-)-2-bromo octane is treated with NaOH, the product is (+)-2-octanol. This inversion of configuration shows by
 - (i) S_N1 mechanism
 - (ii) S_N2 mechanism
 - (iii) S_Ni mechanism
 - (iv) None of the above
- (c) Malaprade reagent used to detect vicinal diol is
 - (i) OsO₄
 - (ii) H₅IO₆
 - (iii) Pb(OAc)4
 - (iv) peracetic acid
- (d) Phenyl acetate when heated with anhydrous AlCl₃ gives o- or p-hydroxy acetophenone. This reaction is known as
 - (i) allyl rearrangement
 - (ii) Claisen rearrangement
 - (iii) Fries rearrangement
 - (iv) None of the above

- (e) Which one of the following compounds will give Cannizzaro's reaction?
 - (i) CH₃CHO
 - (ii) C₆H₅CH₂CHO
 - (iii) (CH₃)₃C—CHO
 - (iv) CH₃CH₂CHO

UNIT-I

- 2. Answer any five of the following questions:

 2×5=10
 - (a) Giving a suitable example, show that in an S_N 2 reaction inversion takes place.
 - (b) Discuss the relative reactivity of alkyl, allyl and aryl halides towards nucleophilic substitution reactions.
 - (c) Give the elimination-addition mechanism of conversion of chlorobenzene into aniline.

24P/46

(Turn Over)

(d) Complete the following reactions:

(i)
$$H_2C$$
 $CH_2 \xrightarrow{RLi} ? \xrightarrow{H^{\oplus}} ?$

(ii)
$$(CH_3)_3C-MgX \xrightarrow{O_2} ? \xrightarrow{H^{\oplus}} ?$$

- Synthesize the following:
 - (i) Ethyl bromide by Hunsdiecker reaction
 - (ii) Fluorobenzene through diazonium salt
- Which one of the following reacts faster in S_N1 reaction and why?

UNIT-II

- 3. Answer any three of the following questions: $2 \times 3 = 6$
 - How would you synthesize α , β unsaturated aldehyde from glycerol?
 - Give the mechanism of the following reaction:

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{COOC}_2\text{H}_5 & \xrightarrow{\text{Na}} \\ \hline \text{Ethanol} \\ \text{CH}_3(\text{CH}_2)_2\text{OH} + \text{C}_2\text{H}_5\text{OH} \end{array}$$

- With the help of Victor Meyer test, how will you distinguish between 1°, 2° and 3° alcohols?
- (d) Complete the following reaction:

$$\begin{array}{c}
OsO_4 \\
? \\
\hline
\end{array}$$
? aq. NaHSO₃ ??

4. Answer any *two* of the following questions: 3×2=6

(a) Complete the following reactions with mechanisms:

$$(i) \xrightarrow{\text{OCH}_2\text{CH} = \text{CH} - \text{CH}_3}$$

$$\xrightarrow{\text{CH}_3} \xrightarrow{\Delta} ?$$

(ii)
$$O_2(air) \longrightarrow ? \xrightarrow{H_2O/H^+} ?$$

(b) Complete the following reaction and write down the possible mechanism:

$$C_6H_5$$
 CH_3 CH_3

(c) Complete the following reactions:

(i) OH 1)
$$Br_2-H_2O$$
 ? 2 $Zn (dust), \Delta$?

$$\begin{array}{c|c} \text{CH}_2\text{--}\text{CH}_2\text{--}\text{CH}_2 \\ \text{(ii)} & | & | & + \text{HI (excess)} \longrightarrow \\ \text{OH} & \text{OH} & \text{OH} \end{array}$$

UNIT-III

Answer either Q. No. 5 or Q. No. 6

5. (a) Complete the following reactions and write down their mechanisms: $3\times2=6$

(i)
$$CH_2$$
— CHO + NaOH (dil.)— \rightarrow

(ii)
$$\frac{1) \text{ N}_2\text{H}_4}{2) 200^{\circ} \text{ C, 5 } hv/\text{C}_2\text{H}_5\text{O}^{-}\text{Na}^{+}}$$

- (b) "Aldol condensation leads to α , β -unsaturated aldehydes and not β , γ -unsaturated aldehydes." Explain.
- 6. (a) Complete the following reactions with the possible mechanisms: 3×2=6

(i) +
$$(Me_2CHO)_3Al$$
 $\xrightarrow{Isopropyl}$ alcohol

- (b) Synthesize the following: 2
 2,3-dimethylbut-2-ene by Wittig reaction.
- 7. Answer any two of the following questions: $2 \times 2 = 4$
 - (a) Mention synthetic applications of the following reagents (any two): 1×2=2

 (i) HIO₄ (Periodic acid)
 - (ii) PCC (Pyridinium chlorochromate)
 - (iii) SeO₂ (Selenium dioxide)

- (b) How can you prepare crotonaldehyde from acetaldehyde?
- (c) What is active methylene compound?

 Show the keto-enol tautomerism in ethylacetoacetate.

 1+1=2
- 8. Synthesize methyl vinyl ketone from acetone.

Or

How is barbutaric acid prepared using malonic ester?

UNIT-IV

Answer either Q. No. 9 or Q. No. 10

- 9. (a) "Carboxylic acids have higher boiling point than the alcohols." Explain.
 - (b) Complete the following reaction and suggest the mechanism:

$$CH_3$$
— CH_2 — C — NH_2 — Br_2/KOH ?

24P/46

(Continued)

2

24P/46

(Turn Over)

2

1

2

(c) Synthesize the following:

 $2 \times 2 = 4$

(i) Citric acid from glycerol

- (ii) Cinamic acid from benzaldehyde by using Knoevenagel reaction.
- **10.** (a) Complete the following reactions: $1 \times 2 = 2$

(i)
$$OOOH \xrightarrow{PCl_5}$$
 ?

$$(ii) \begin{array}{c} \text{CH}_2\text{--COOH} \\ | \\ \text{(iii)} \end{array} \xrightarrow{\text{C(OH)---COOH}} \xrightarrow{\text{H}_2\text{SO}_4} ? \\ | \\ \text{CH}_2\text{---COOH} \end{array}$$

- (b) How would you synthesize the following? 2×2=4
 - (i) Cyclopentanone from esters of adipic acid by Dieckmann reaction
 - (ii) Lactic acid from propene
- (c) Discuss the mechanism of acidcatalyzed hydrolysis of ester.

3

24P/46

(Continued)

UNIT-V

- 11. What are thioethers? How do you obtain diethyl thioether from ethyl mercaptan? What happens when a thioehter is oxidized with H₂O₂?

 12. What are thioethers? How do you obtain diethyl thioether from ethyl mercaptan?

 13. What are thioethers? How do you obtain diethyl thioethers? How do you obtain diethyl mercaptan?
- 12. Which is the stronger acid, ROH or RSH?

 Give reason for your answer. 1+1=2

* * *