Total No. of Printed Pages—15

2 SEM TDC STSH (CBCS) C 4 (N/O)

2023

(May/June)

STATISTICS

(Core)

Paper: C-4

(Algebra)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 55
Pass Marks: 22

Time: 3 hours

- 1. Choose the correct answer from the given alternatives in each question: 1×6=6
 - (a) A polynomial of three terms is called a
 - (i) monomial
 - (ii) binomial
 - (iii) trinomial
 - (iv) All of the above

(b) If
$$\begin{bmatrix} 5 & k+2 \\ k+1 & -2 \end{bmatrix} = \begin{bmatrix} k+3 & 4 \\ 3 & -k \end{bmatrix}$$
, then $k = (i)$ 0

- (ii) 2
- (iii) -2
- (iv) 1
- (c) Cofactor of 4 in the determinant

is equal to

- (i) 2
- (ii) -2
- (iii) -5
- (iv) None of the above
- (d) If one root of the equation

$$\begin{vmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{vmatrix} = 7$$

is x = -9, then the other roots are

- (i) (2, 6)
- (ii) (3, 6)
- (iii) (2, 7)
- (iv) (3, 7)

If a matrix A has a non-zero minor of order r, then

- (i) $\rho(A) = r$
- (ii) $\rho(A) \geq r$
- (iii) $\rho(A) < r$
- (iv) $\rho(A) \leq r$

The matrix of a quadratic form is

- (i) symmetric
- (ii) anti-symmetric
- (iii) orthogonal
- (iv) Hermitian

2. Answer the following:

 $3 \times 4 = 12$

(Turn Over)

(a) Solve the equation

$$x^4 - 7x^3 + 27x^2 - 47x + 26 = 0$$

given that one of its root is 2+3i.

(b) If
$$\begin{bmatrix} A^{-1} & 0 \\ X & A^{-1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ B & A \end{bmatrix}^{-1}$$
 and A is non-singular, then find out the value of X.

(c) Show that

P23/906

$$\begin{vmatrix} a^{2} & bc & ac+c^{2} \\ a^{2}+ab & b^{2} & ca \\ ab & b^{2}+bc & c^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

(d) Reduce the matrix A to its normal form, where

$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

Hence find the rank of A.

3. Answer any one of the following:

(a) (i) If $(ax^3 + bx^2 + cx + d)$ be divisible by $(x^2 + l^2)$, then show that ad = bc.

(ii) Find the equation whose roots are 1, -2, 3, -4.

(b) (i) Solve the equation $x^3 - 9x^2 + 23x - 15 = 0$

whose roots are in AP.

(ii) If the equation

$$x^4 + ax^3 + bx^2 + cx + d = 0$$

has three equal roots, then show that each of them is equal to

$$\frac{6c-ab}{3a^2-8b}$$

- (i) Prove that, if two vectors are linearly dependent, one of them is a scalar multiple of the other.
 - Define basis of a vector space.

4. Answer any two of the following:

 $3 \times 2 = 6$

- (a) If A and B are two idempotent matrices, then show that A + B will be idempotent if AB = BA = 0.
- (b) Show that any diagonal element of a Hermitian matrix is necessarily real.
- (c) If A and B are two n-rowed orthogonal matrices, then AB and BA are also orthogonal matrices.
- (d) Prove that the necessary and sufficient condition for a square matrix A to possess the inverse is that $|A| \neq 0$.
- (e) Let A and B be two square matrices of order n. Then prove that

$$tr(AB) = tr(BA)$$

- 5. Answer any three of the following: $5 \times 3 = 15$
 - (a) Write the general definition of determinant and mention its properties.

2+3=5

(b) Define adjoint of a square matrix. If $A_{n\times n}$ is a square matrix of order n, then prove that

$$A (adj A) = (adj A) A = |A|I_n$$
 2+3=5

P23/906

(Continued)

6

P23/906

(Turn Over)

(c) Solve the following equations by using Cramer's rule:

$$x+2y+3z=6$$

$$2x+4y+z=7$$

$$2x+2y+9z=14$$

- (d) Define circulant determinant and Vandermonde determinant for nth order.
- (e) Investigate for what values of λ and μ , the system of simultaneous equations

$$x+y+z=6$$

$$x-2y+3z=10$$

$$x+2y+\lambda z=\mu$$

has (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

(f) Given that

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 3 & 1 \\ 0 & 5 & -2 \end{bmatrix}$$

Compute (i) |A|, (ii) adj A and (iii) A^{-1} .

- **6.** Answer any two of the following: $5\times 2=10$
 - (a) Prove that rank of a non-singular matrix is equal to the rank of its reciprocal matrix.
 - (b) Under what condition the rank of the following matrix A is 3? Is it possible for the rank to be 1? Why?

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$$

(c) Obtain a g-inverse of the matrix given by

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(d) Find the characteristic roots and characteristic vectors of the matrix

$$A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

(e) State and prove Cayley-Hamilton theorem.

(9)

(Old Course)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

- 1. Choose the correct answer from the given alternatives in each question:
 - (a) A polynomial of three terms is called a
 - (i) monomial
 - (ii) binomial
 - (iii) trinomial
 - (iv) None of the above
 - The fundamental theorem of algebra states that, every algebraic equation has
 - (i) at least one root, real or imaginary
 - (ii) only two roots, both are real
 - (iii) only two roots, one real and other
 - (iv) at least one root, which is real

- (c) If $\begin{bmatrix} 5 & k+2 \\ k+1 & -2 \end{bmatrix} = \begin{bmatrix} k+3 & 4 \\ 3 & -k \end{bmatrix}$, then k = 1
 - (i) 0
 - (ii) 2
 - (iii) -2
 - (iv) 1
 - (d) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, then $A^{-1} =$

 - (i) $\begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$ (ii) $\begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix}$

 - (iii) $\begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$ (iv) $\begin{bmatrix} -5 & 2 \\ -2 & 1 \end{bmatrix}$
 - (e) Cofactor of 4 in the determinant

is equal to

- (i) 2
- (ii) -2
- (iii) -5
- (iv) None of the above

(f) If one root of the equation

$$\begin{vmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{vmatrix} = 7$$

is x = -9, then the other roots are

- (i) (2, 6)
- (ii) (3, 6)
- (iii) (2, 7)
- (iv) (3, 7)
- (g) If a matrix A has a non-zero minor of
 - (i) $\rho(A) = r$
 - (ii) $\rho(A) \ge r$
 - (iii) $\rho(A) < r$
 - (iv) $\rho(A) \leq r$
- (h) The matrix of a quadratic form is
 - (i) symmetric
 - (ii) anti-symmetric
 - (iii) orthogonal
 - (iv) Hermitian

2. Answer the following:

 $4 \times 4 = 16$

(a) Solve the equation

$$x^4 - 7x^3 + 27x^2 - 47x + 26 = 0$$

given that one of its root is $2 + 3i$.

- (b) If $\begin{bmatrix} A^{-1} & 0 \\ X & A^{-1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ B & A \end{bmatrix}^{-1}$ and A is nonsingular, then find out the value of X.
- (c) Show that

P23/906

$$\begin{vmatrix} a^{2} & bc & ac+c^{2} \\ a^{2}+ab & b^{2} & ca \\ ab & b^{2}+bc & c^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

(d) Reduce the matrix A to its normal form, where

$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

Hence find the rank of A.

- $7 \times 2 = 14$ 3. Answer any two of the following:
 - Write the statements of remainder theorem and factor theorem of classical algebra.

- (ii) If the sum of two roots of the cubic $x^3 + a_1x^2 + a_2x + a_3 = 0$ is zero, prove that $a_1a_2 = a_3$.
- (b) (i) If $(ax^3 + bx^2 + cx + d)$ be divisible by $(x^2 + l^2)$, then show that ad = bc. $3\frac{1}{2}$
 - (ii) Find the equation whose roots are 1, -2, 3, -4.
- (c) (i) Solve the equation $x^3 9x^2 + 23x 15 = 0$ whose roots are in AP. $3\frac{1}{2}$
 - (ii) If the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ has three equal roots, then show that each of them is equal to

$$\frac{6c - ab}{3a^2 - 8b}$$
 3½

(Continued)

- (d) (i) Prove that, if two vectors are linearly dependent, one of them is a scalar multiple of the other.

 (ii) Define basic as
 - (ii) Define basis of a vector space. 3

(a) If A and B are two idempotent matrices, then show that A + B will be idempotent if AB = BA = 0.

4. Answer any two of the following:

(13)

- (b) Show that any diagonal element of a Hermitian matrix is necessarily real.
- (c) If A and B are two n-rowed orthogonal matrices, then AB and BA are also orthogonal matrices.
- (d) Prove that the necessary and sufficient condition for a square matrix A to possess the inverse is that $|A| \neq 0$.
- (e) Let A and B be two square matrices of order n. Then prove that

$$tr(AB) = tr(BA)$$

- 5. Answer any four of the following: 6×4=24
 - (a) Write the general definition of determinant and mention its properties.
 - (b) Define adjoint of a square matrix. If A is a square matrix of order n, then prove that

$$A \text{ (adj } A) = \text{ (adj } A) A = |A|I_n$$

(c) Solve the following equations by using Cramer's rule:

$$x+2y+3z=6$$
$$2x+4y+z=7$$
$$2x+2y+9z=14$$

- (d) Define circulant determinant Vandermonde determinant for and
- (e) Investigate for what values of λ and μ , the system of simultaneous equations

$$x+y+z=6$$

$$x-2y+3z=10$$

$$x+2y+\lambda z=\mu$$

has (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

Given that

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 3 & 1 \\ 0 & 5 & -2 \end{bmatrix}$$

Compute (i) |A|, (ii) adj A and (iii) A^{-1} .

- 6. Answer any two of the following: 41/2×2=9
 - (a) Prove that rank of a non-singular matrix is equal to the rank of its reciprocal

(b) Under what condition the rank of the following matrix A is 3? Is it possible for the rank to be 1? Why?

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$$

Obtain a g-inverse of the matrix given by

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Find the characteristic roots characteristic vectors of the matrix

$$A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

State Cayley-Hamilton prove and theorem.
