4 SEM TDC GEMT (CBCS) 4.1/4.2/4.3

2023

(May/June)

MATHEMATICS

(Generic Elective)

Paper: GE-4.1/4.2/4.3

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Paper: GE-4.1

(Algebra)

UNIT-1

1. Let n be a positive integer. If n is even, is an n-cycle an odd or an even permutation? Write your answer.

- 2. Justify that in a group, the left and right cancelation laws hold.
- 3. Is the set {0, 1, 2, 3, 4, 5, 6} a group with respect to multiplication modulo 7? Give reason.
- 4. Let G be a group with the following property:

 If $a, b, c \in G$ and ab = ca, then b = cProve that G is Abelian.
- 5. Mention the symmetries of a rectangle.
- 6. Show that the set {5, 15, 25, 35} is a group with respect to multiplication modulo 40. Find the identity element and inverses of each element.
- 7. Compute product of cycles (147)(78)(257) that are permutations of

Or

Explain the quaternion group.

8. Let

$$G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : 0 \neq a \in R \right\}$$

show that G is a group under matrix multiplication.

Or

Show that the set of all the cube roots of unity forms a group under usual multiplication of complex numbers.

UNIT-2

- 9. Prove that in any group an element and its inverse have the same order.
- 10. Let G be a group and $x \in G$. If $x^2 \neq e$ and $x^6 = e$, prove that $x^4 \neq e$ and $x^5 \neq e$; e being the identity of G.
- 11. Let G be an Abelian group with odd number of elements. Show that product of all the elements of G is the identity.

3

2

5

(Continued)

3

5

P23/1165

(Turn Over)

- 12. Show that a group that has only a finite number of subgroups must be a finite group.
- 13. Show that if a finite group G contains a proper sub-group of index 2 in G, then G is not simple.

Or

Let G = GL(2, R) and

$$H = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a \text{ and } b \text{ are non-zero integers} \right\}.$$

Prove or disprove H is a sub-group of G.

14. Define normal sub-group. Show that if a finite group G has exactly one sub-group sub-group order, then H is a normal 1+5=6

Or

Define commutator sub-group. Prove that commutator sub-group of a group G is normal in G.

P23/1165 (Continued)

15. Define a normal sub-group. Show that if H and N are sub-groups of a group G and N is normal in G, then $H \cap K$ is normal in H.

Or

Define centre of a group. Let Z be the centre of a group. Prove that if $\frac{G}{Z}$ is a cyclic group, then G is Abelian. 5+1=6

UNIT-3

16. State True or False:

4

Every ring has an additive identity.

1

1

2

3

17. State True or False:

A divisor of zero in a commutative ring with unity can have no multiplicative inverse.

- 18. Show that a unit of a ring divides every element of the ring.
- 19. Let R be a ring and a be a fixed element of R. Show that $I_a = \{x \in R : ax = 0\}$ is a subring of R.

(Turn Over)

- 20. Suppose that R is ring and that $a^2 = a$ for all a in R. Show that R is commutative.
- 21. Show that intersection of subrings of a ring is again a subring of R.
- 22. Show that the set of all purely imaginary numbers under usual addition and multiplication forms a ring.

Or

Suppose b and c belong to a commutative ring and bc is a zero divisor. Show that either b or c is a zero divisor.

23. Show that the quaternions form a skew field.

Or

Show that the sum of all the elements of a

Paper: GE-4.2

(Application of Algebra)

- 1. (a) দেখুওৱা যে, এটা (v, k, λ)-BIBD, প্রতিটো বিন্দু সঠিকভাৱে $r=rac{\lambda(\nu-1)}{k-1}$ ব্লকত উপলব্ধ, য'ত r অক BIBD ৰ ৰিপ্লিকেশ্যন সংখ্যা বুলি জনা যায়। 5 Show that in a (v, k, λ) -BIBD every point occurs in exactly $r = \frac{\lambda(v-1)}{k-1}$ blocks where r is called the replication number of BIBD.
 - দেখুওৱা যে এটা (ν, k, λ)-BIBDত সম্পূর্ণ সঠিকভাৱে $b = \frac{vr}{L} = \frac{\lambda(v^2 - v)}{L^2 - L}$ সংখ্যক ব্লক থাকে। Show that a (v, k, λ) -BIBD has exactly $b = \frac{vr}{L} = \frac{\lambda(v^2 - v)}{L^2}$ blocks.
 - (c) ইন্সিডেন্স কোটিৰ সংজ্ঞা দিয়া। ধৰাহওক $M=(m_{ii});$ $N=(n_{ij})$ দুয়োটা $v \times b$ ইন্সিডেন্স মেট্রিক্স। দেখুওৱা যে, দুয়োটা ডিজাইন আইচ'মৰফিক হ'ব যদি আৰু যদিহে, γ আৰু β যথাক্রমে $\{1, 2, ..., v\}$ আৰু {1, 2, ..., b} व একোটাহঁত विन्যाস হয় যাতে. $m_{ij}=n_{\gamma(i),\;\beta(j)};\;\;1\leq i\leq \nu;\;\;1\leq j\leq b\;.$

Define incidence matrix. Let $M = (m_{ij})$ and $N = (n_{ij})$ be both $v \times b$ incidence matrices. Show that the two designs are isomorphic if and only if there exists permutations γ of $\{1, 2, ..., v\}$ and $\beta \text{ of } \{1, 2, ..., b\} \text{ such that } m_{ij} = n_{\gamma(i)}, \beta(j);$ $1 \le i \le v$; $1 \le j \le b$.

- 2. (a) ধৰা হওক H এটা পেৰিটি ছেক্ মেট্ৰিক্স যাৰ ৰৈখিক ক'ড হ'ল C ≠ {0}. দেখুওৱা যে C ৰ আটাইতকৈ কম দূৰণ্ণ হ'ব d, যি সকলোতকৈ ডাঙৰ অখণ্ড সংখ্যা যাতে Hৰ প্ৰতিটো d-1 স্তৱকৰ সংহতি ৰৈখিকভাৱে স্বতন্ত্ৰ। Let H be a parity-check matrix of a linear code $C \neq \{0\}$. Show that the minimum distance of C is the largest integer d such that every set of d-1columns in H is linearly independent.
 - (b) দেখুওৱা যে F=GF(q)ত বৈধিক ক'ড $[n,\,k,\,d]$ ৰ পৃথক জেনেবেটৰ মেট্ৰিক্সৰ সংখ্যা হ'ব $\prod_{i=0}^{k-1}(q^k-q^i).$ Show that the number of distinct generator matrix of a linear [n, k, d]code over the Galois field of size q, F = GF(q) is $\prod_{i=0}^{k-1} (q^k - q^i)$.
 - চাইক্লিক ক'ডৰ ৰৈখিক ধৰ্ম আৰু চাইক্লিক স্থানান্তৰকৰণ ধর্মৰ বিষয়ে ব্যাখ্যা কৰা। Describe the linear property 6 property of cyclic shifting of cyclic

3.	(a)	চমু টোকা লিখা (যি কোনো এটা):
	()	Write short notes on (any one)

- (i) প্ৰতিফলন সমমিতা Reflection symmetry
- (ii) ঘূনীয়মান সমমিতা Rotational symmetry
- ডাইহিড্ৰেল গ্ৰুপৰ ওপৰত এটা বৰ্ণনাত্মক টোকা লিখা। (b) Write a descriptive note on Dihedral Group.
- এটা সংহতিৰ ওপৰত গ্ৰুপ একশ্বনৰ সংজ্ঞা দিয়া। যদি X(c) এটা লেফ্ট G-সংহতি হয় তেন্তে দেখুওৱা যে, যি কোনো $g \in G$ ৰ বাবে, ফলন $X \to X$ টো যাৰ সংজ্ঞা $x
 ightarrow g \cdot x$, Xৰ এটা বিন্যাস। 6 Define group action on a set. If X be a G left set, then show that for any $g \in G$, the function $X \to X$ defined by $x \to g \cdot x$ is a permutation of X.
- 4. (a) আইডেমপটেন্ট, নীলপটেন্ট আৰু ইনভলুটেৰি কোটিৰ সংজ্ঞা আৰু উদাহৰণ দিয়া। 6 nilpotent Define idempotent, involutory matrices, with examples.
 - (b) দেখুওৱা যে তলৰ আকাৰটো পজিটিভ ডেফিনিট : 5 Show that the following quadratic form is positive definite:

$$x^2 + 2y^2 + 3z^2 + 2xy + 4yz + 2zx$$

P23/1165

5

(c) তলৰ দ্বিঘাতীয় আকাৰটো নৰ্মেল আকাৰলৈ নিয়া :

Reduce the following quadratic form into normal form:

$$x^2 - 5xy + y^2 + 8x - 20y + 15 = 0$$

5. (a) তলৰ মেট্ৰক্সটো ৰিদিউসদ এশ্বিলন ফৰ্মলৈ নিবলৈ ব'-বিদাকশ্যন এলগ'ৰিথম ব্যৱহাৰ কৰা।

Use row-reduction algorithm to reduce the following matrix into row-reduced echelon form.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

(b) মেট্রিয় A-ৰ LU-ফেক্টুৰহিজেশ্যন নির্ণয় কৰা। 8
Find LU-factorization of the following matrix A.

$$A = \begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$$

Paper: GE-4.3

(Combinatorial Mathematics)

1. Answer the following questions:

1×4=4

- (a) State the principle of inclusion and exclusion.
- (b) Write True or False: If ${}^{n}C_{k_1} = {}^{n}C_{k_2}$, then always $k_1 = k_2$.
- (c) Define generating function for a sequence.
- (d) How many initial conditions are required to solve the following recurrence relation?

$$a_n = 3a_{n-1} + a_{n-2} - 4a_{n-3}$$

2. Answer the following questions: 2×12=24

- (a) Find the number of ordered pairs (x, y) of integers such that $x^2 + y^2 \le 5$.
- (b) In how many ways can 5 boys and 3 girls be seated in a table if no girls are adjacent?
- (c) Show that ${}^{n}P_{r} = (n+1-r)^{n}P_{r-1}$.

(d) Let $r \in \mathbb{N}$ s.t.

$$\frac{1}{\binom{9}{r}} - \frac{1}{\binom{10}{r}} = \frac{11}{6\binom{11}{r}}$$

Find the value of r.

- (e) Show that $\sum_{r=1}^{n} r \binom{n}{r} = n \cdot 2^{n-1}$.
- (f) Among any group of 3000 people, show that there are at least 9 who have same birthday.
- (g) Let A, B and C be finite sets. Show that $n(\overline{A} \cap B) = n(B) n(A \cap B).$
- (h) Each of the 3 boys tosses a die once. Find the number of ways for them to get a total of 14.
- (i) Show that the exponential generating function for the sequence (1, 1.3, 1.3.5, 1.3.5.7, ...) is $(1-2x)^{\frac{-3}{2}}$.
- (i) Solve: $a_n = 2a_{n-1}$, given that $a_0 = \frac{1}{2}$.

(k) Let S(n, k) be the stirling number of second kind. Prove that $S(n, 2) = 2^{n-1} - 1$ and

$$S(n, n-1) = \binom{n}{2}$$

- (1) Determine the cycle index of the alternative group A(n).
- 3. Answer any seven of the following questions: 4×7=28
 - (a) Find the generating function for the sequence

$$\left\{ \binom{n-1}{0}, \binom{1+n-1}{1}, \ldots, \binom{r+n-1}{r}, \ldots \right\}$$

- (b) Prove that S(n, k) = S(n-1, k-1) + kS(n-1, k) where $k, n \in \mathbb{N}$ and $n \ge k$.
- (c) Show that

$$\sum_{i=0}^{r} {m \choose i} {n \choose r-i} = {m+n \choose r}$$

for all $m, n, r \in \mathbb{N}$.

- (d) Show that for any set of 10 points chosen within a square whose sides are of length 3 units, there are two points in the set whose distance apart is at $\sqrt{2}$.
- (e) Find the number of non-negative integer solutions to the equation $x_1 + x_2 + x_3 = 15$, where $x_1 \le 5$, $x_2 \le 6$
- (f) In how many ways can 4 of the letters from PAPAYA be arranged?
- (g) Solve the recurrence relation $a_n = 2(a_{n-1} a_{n-2})$ given that $a_0 = 1$ and $a_1 = 0$.
- (h) If in a BIBD, $D(v, b, r, k, \lambda)$, b is divisible by r, then show that $b \ge v + r 1$. (Hint: as b is divisible by r, $\lambda(v-1) = r(k-1)$).
- 4. Answer any four of the following questions:
 - (a) What do you mean by symmetric BIBD?

 Prove that, in case of a symmetric BIBD, any two blocks have λ treatment

 1+5=6

- (b) Solve the recurrence relation $a_n 7a_{n-1} + 15a_{n-2} 9a_{n-3} = 0$, given that $a_0 = 1$, $a_1 = 2$ and $a_2 = 3$.
- (c) Show that the number of non-negative integer solution of $x_1 + x_2 + \cdots + x_n = r$ is given by $\binom{r+n-1}{r}$
- (d) Express the generating function for each of the following sequences in closed form: 3+3=6
 - (i) $c_r = 3r + 5$ for each $r \in \mathbb{N} \cup \{0\}$
 - (ii) $c_r = r^2$ for each $r \in \mathbb{N} \cup \{0\}$
- (e) How many different necklaces having five beads can be formed using three different kinds of beads, if—
 - (i) both flips and rotations;
 - (ii) rotations only? 3+3=6

* * *

4 SEM TDC GEMT (CBCS) 4.1/4.2/4.3