6 SEM TDC STSH (CBCS) C14

2022

(June/July)

STATISTICS

(Core)

Paper: C-14

(Multivariate Analysis and Nonparametric Methods)

Full Marks: 50
Pass Marks: 20

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×5=5
 - (a) The variance-covariance matrix for the three variables $X = (x_1, x_2, x_3)'$ is given by

$$\Sigma = \begin{pmatrix} 1 & -2 & 5 \\ 3 & 9 & 2 \\ -2 & 4 & 16 \end{pmatrix}$$

then the s.d. of x_3 is

- (i) 4
- (ii) 16
- (iii) 5
- (iv) 9
- (b) Let Z_1, Z_2, \dots, Z_n be independent $N_P(Q, \Sigma)$. Then $A = \sum_{i=1}^n Z_i Z_i'$ is said to have
 - (i) multivariate normal distribution
 - (ii) Wishart distribution
 - (iii) exponential distribution
 - (iv) Hotelling T^2 statistic
- (c) The range of multiple correlation coefficient is
 - (i) 0 to ∞
 - (ii) 0 to 1
 - (iii) -1 to 1
 - (iv) -∞ to +∞

- (d) In discriminant analysis, the criterion for scale of dependent variable is ____ and the predictor or independent variables are ____ in nature.
 - (i) interval; categorical
 - (ii) ordinal; interval
 - (iii) categorical; interval
 - (iv) ordinal; categorical
- (e) While performing Kruskal-Wallis test, the ranks are assigned
 - (i) independently to the observation for each treatment
 - (ii) for observations in each block independently
 - (iii) by pooling all the observations
 - (iv) None of the above
- 2. Answer the following questions in brief: 2×5=10
 - (a) For a bivariate normal distribution $(X, Y) \sim B \vee N\left(1, 2, 16, 25, \frac{12}{13}\right)$

find P(X > 2).

- (b) State the properties of multiple correlation coefficient.
- (c) Distinguish between principal component and factor analysis.
- (d) Distinguish between non-parametric methods and distribution-free methods.
- How to resolve the problem of zero differences in sign test?
- 3. (a) Let the joint p.d.f. of X and Y be

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)}{\sigma_1} \frac{(y-\mu_2)}{\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

where $-\infty < x < \infty$; $-\infty < y < \infty$, $-1 < \rho < 1$.

- (i) Find the marginal distribution of X;
- (ii) Find the conditional distribution of Y given X = x.

Or

(b) Suppose

$$X = \begin{bmatrix} 10 & 100 \\ 12 & 110 \\ 11 & 105 \end{bmatrix}$$

then-

- find the mean vector; (i)
- construct the variance-covariance matrix.

4

3

4. (a) (i) Let X (with P components) be distributed as $N_P(\mu, \Sigma)$. Show that Y = CX is distributed according to $Y = CX \sim N_P(C\mu, C\Sigma C')$, for C is non-singular.

(ii) Let X be $N_3(\mu, \Sigma)$ with $\mu' = [2, -3, 1]'$ and

$$\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

Find the distribution of $3X_1 - 2X_2 + X_3$

Or

- (b) (i) Explain the concept of partial correlation coefficient with examples. Show that partial correlation coefficient is the geometric mean between the regression coefficients. 2+3=5
 - (ii) Derive the coefficient of multiple
- 5. (a) How is principal component analysis used for dimensionality reduction?

 Determine the population principal

correlation.

7

4

6

components Y_1 , Y_2 for the covariance matrix

$$\Sigma = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}$$

Also calculate the proportion of the total population variance explained by the first principal component. 2+5=7

Or

- (b) State the assumptions of discriminant analysis. Explicate Fisher's linear discriminate function. 2+5=7
- 6. (a) What do you mean by empirical distribution function? Describe briefly Kolmogorov-Smirnov test of goodness of fit in case of one sample. Write some applications of Kolmogorov-Smirnov test.

2+6+2=10

3

Or

(b) (i) Following is a sequence of heads (H) and tails (T) in tossing of a coin 14 times :

нттнннтнттннтн

Test whether the heads (H) and tails (T) occur in a random order. [Given $\alpha = 0.05$, $\pi_L = 2$, $\pi_u = 12$]

(ii) Explicate Mann-Whitney U-test for testing the identicalness of two populations.

7
