Total No. of Printed Pages-4

6 SEM TDC DSE STS (CBCS) 3 (H)

2022

(June/July)

STATISTICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-3

(Survival Analysis and Biostatistics)

Full Marks: 50

Pass Marks: 20

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×5=5
 - (a) Given the hazard function

$$h(t) = \alpha \lambda (\lambda t)^{\alpha - 1}; \ \lambda > 0$$

If $\alpha > 1$, then we have

- (i) increasing failure rate (IFR)
- (ii) constant failure rate (CFR)
- (iii) decreasing failure rate (DFR)
- (iv) None of the above

Given the death density function

$$f(t) = (\lambda_0 + \lambda_1 t) \exp\left[-\left(\lambda_0 t + \frac{\lambda_1}{2} t^2\right)\right]$$

Then its survival function s(t) is

(i)
$$(\lambda_0 + \lambda_1 t)$$

(ii)
$$\exp\left[-\left(\lambda_0 t + \frac{\lambda_1}{2} t^2\right)\right]$$

(iii)
$$(\lambda_0 + \lambda_1 t^2)$$

(iv)
$$\exp\left[-\left(\lambda_0 + \frac{\lambda_1}{2}t^2\right)\right]$$

- (c) Which of the following is not a measure of competing risk theory?
 - (i) Crude probability
 - (ii) Net probability
 - (iii) Partially net probability
 - (iv) Partially crude probability
- The coefficient of skewness for the (d) distribution of the duration of time T of the epidemic when $n \to \infty$ is
 - 0.6
 - (ii) 0.7
 - (iii) 0·8
 - (iv) 0.9

- (e) Mating is said to be random, if
 - (i) $P(A_i A_j) = g_{ij} = g_i g_j$
 - (ii) $P(A_i A_j) = g_{ij} \neq g_i g_j$
 - (iii) $P(A_i A_i) = g_i$
 - (iv) $P(A_i A_i) = g_i$
- 2. Answer the following in brief of the following: 2×5=10
 - (a) Define survival function and hazard function.
 - (b) Explain with example how censoring occurs in medical experiment.
 - (c) State general epidemic model.
 - (d) Define clinical trial.
 - (e) Define genotype and phenotype.
 - 3. (a) Show that

$$s(t) = \exp\left[-\int_{0}^{t} h(x)dx\right]$$

(b) (i) Find the survival function s(t) and probability density function f(t) when hazard function is $h(t) = \lambda$.

2+2=4

Or

(ii) Find the survival function s(t) and probability density function f(t) for a distribution having bath-tub shaped hazard function.

4

	(c)	Discuss about different types of censoring schemes with examples.	4
	(d)	(i) Estimate the mean survival time for type-I censored data.	5
		Or	
		(ii) Estimate the survival function by Kaplan-Meier method.	
4.	(a)	Stating the assumptions explicitly, obtain the expression of crude probability due to risk $R_{\delta}(Q_{\mathfrak{D}})$.	7
		Or	
	(b)	Derive the relationship between crude probability and net probability (Type A).	
5.	(a)	Define epidemiology and write about its objectives.	5
		Or	
	(b)	Discuss about different epidemiological study designs.	
6.	(a)	State the Mendelian laws of heredity.	7
		. Or	
	(b)	Obtain the probability distribution of AB under random mating.	•