4 SEM TDC PHYH (CBCS) C 10

2022

(June/July)

PHYSICS

(Core)

Paper: C-10

(Analog Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) When reverse bias is applied to a junction diode
 - (i) width of depletion layer decreases
 - (ii) potential barrier increases
 - (iii) potential barrier decreases
 - (iv) minority carrier increases

(b)	The rectification efficiency of full-wave rectifier is of half-wave rectifier.
	(i) equal
	(ii) half
	(iii) double
	(iv) 1.21 times
(c)	Quiescence is a state of
	(i) activity
	(ii) inactivity
	(iii) amplification
	(iv) switching
(d)	In a transistor amplifier, the input impedance should be
	(i) low
	(ii) high
	(iii) negligible
	(iv) None of the above

- (e) Which of the following electrical characteristics is not exhibited by an ideal OP-AMP?
 - (i) Infinite voltage gain
 - (ii) Infinite bandwidth
 - (iii) Infinite output resistance
 - (iv) Infinite slew rate
- 2. (a) Explain how depletion layer is formed under unbiased situation of a p-n junction diode.
 - (b) Explain the current flow mechanism in forward and reverse biased p-n junction diode.

Or

Define the mobility of charge carriers and conductivity. Obtain an expression for the electrical conductivity of an intrinsic semiconductor. 1+3=4

3

4

3.	(a)	Explain with circuit diagram, the Zener	
		diode as a voltage regulator.	3
	(b)	Describe the working of LED.	2
4.	(a)	Draw the C-E circuit of a transistor. Sketch its output characteristics. Explain the active, cut-off and saturation regions. 1+1+2	2=4
	(b)	Define α and β of a transistor. Write the relation between them.	2
5.	(a)	Draw a voltage-divider bias circuit and derive an expression for its stability factor.	£
		Or	
		A germanium transistor with $\beta = 100$ is to be operated as a C-E amplifier with fixed bias method. The transistor operates at the signal collector current $I_0 = 1$ mA	

current $I_C = 1$ mA and $V_{CE} = 4$ V. If a load resistance of 2 k Ω is connected in the collector circuit, then find the base resistance to be connected. (For germanium transistor $V_{BE} = 0.3$ V)

(b) Draw the small signal hybrid equivalent circuit of a common-emitter transistor amplifier and derive the expressions for current gain and input impedance.

4

Or

Explain class A, class B and class C amplifiers with graphical representation.

6. Draw and discuss the frequency response curve of an *R-C* coupled transistor amplifier showing cut-off frequencies and the bandwidth.

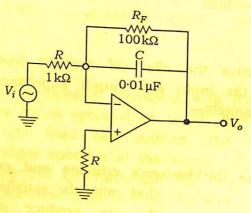
3

7. Discuss the effect of negative feedback on the input and output impedances of an amplifier.

3

8. State Barkhausen's criterion and explain the conditions that must be satisfied for feedback amplifier to produce steady oscillations.

1+2=3.


Or

Draw circuit diagram of an R-C phase shift oscillator and explain its operation.

3

3

- 9. (a) What is an OP-AMP? Draw the schematic block diagram of basic OP-AMP.
 - (b) Explain with circuit diagram, the adder and subtractor using OP-AMP.
 - (c) Determine the lower frequency limit (critical frequency) for the integrator circuit shown below:

Or

Discuss OP-AMP as log amplifier.

 Draw the block diagram of successive approximation type A/D converter.

3

Or

Draw the circuit diagram of weighted resistor type D/A converter.
