2 SEM TDC MTMH (CBCS) C 4

2022

(June/July)

MATHEMATICS

(Core)

Paper : C-4

(Differential Equations)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions (Throughout the paper, notations $y'' = \frac{d^2y}{dx^2}$, $y' = \frac{dy}{dx}$)

- 1. (a) Define an integrating factor of a 1 differential equation.
 - Define implicit solution of the 1 (b) differential equation.

(c) Show that the function f defined by $f(x) = 2e^{3x} - 5e^{4x}$, is a solution of the differential equation y'' - 7y' + 12y = 0.

Or

Show that the function $x^2 + y^2 = 25$ is an implicit solution of the differential equation $x + yy'_c = 0$ on the interval -5 < x < 5

(d) Solve the initial value problem

$$y' = e^{x+y}, y(1) = 1$$

(e) Verify the exactness of the differential equation,

 $(2x\sin y + y^3e^x)dx + (x^2\cos y + 3y^2e^x)dy = 0$

- (f) Solve any two of the following: $3\times 2=6$ (i) $(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0$
 - (ii) $xy' + (x+1)y = x^3$

(iii)
$$y' + 3x^2y = x^2$$
, $y(0) = 2$

2. (a) Draw the input-output compartmental diagram for lake pollution model. Write the word equation to derive this model.

1+1=2

3

2

2

(b) Derive the formula for half-life of radioactive material.

22P/1380

(c)	Derive the differential equation of exponentially growth population model.	3
(d)	 (i) Solve the differential equation \(\frac{dC}{dt} = \frac{F}{V}(c_{in} - C)\) with initial condition C(0) = c_0. (ii) How long ago was the radioactive carbon (14 C) formed and, within an error margin, the Lascaux Cave paintings painted? (the half-life of 14 C is 5.568 + 30 years). Decay rate 	3
	of carbon ¹⁴ C is 1.69 per minute per gram and initially 13.5 per minute per gram.	
(a)	Define linear combinations of n functions.	1
(b)	State the principle of superposition for homogeneous differential equation.	1
(c)	Fill in the blank: If the Wronskian of two solutions of 2nd order differential equation is identically zero, then the solutions are linearly	1
(d)	e^{2x} and e^{3x} are the two	3

3.

(e) If $y_1(x)$ and $y_2(x)$ are any two solutions of the equation

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0,$$

 $a_0(x) \neq 0, x \in (a, b)$

then prove that the linear combination $c_1y_1(x)+c_2y_2(x)$, where c_1 and c_2 are constants, is also a solution of the given equation.

Or

Show that $e^x \sin x$ and $e^x \cos x$ are linearly independent solutions of y''-2y'+2y=0. Write the general solution. Find the solution y(x) with the property y(0)=2, y'(0)=-3.

- 4. Answer any one of the following:
 - (a) If y = x is a solution of $(x^2 + 1)y'' 2xy' + 2y = 0$, then find a linearly independent solution by reducing the order.
 - (b) Solve $x^2y'' 2xy' + 2y = x^3$
- **5.** Answer any *two* of the following: $5\times2=10$
 - (a) Solve $y'' + ay = \sec ax$.
 - (b) Solve by method of undetermined coefficient $y''-2y'+y=x^2$.

22P/1380

(Continued)

4

5

(c) Solve by method of variation of parameter

- $y'' + y = \tan x$ 6 (a) Define equilibrium solution of a
- differential equation and differential

1

2

3

4

- (b) Write the word equation and differential equation for the model of battle.(c) Find the equilibrium solution of the
 - (c) Find the equilibrium solution of the differential equation of epidemic model of influenza.
 - of influenza.

 (d) Draw the phase plane diagram of $\frac{dx}{dt} = 0.2x 0.1 xy,$ $\frac{du}{dt} = -0.15 y + 0.05 xy$

Sketch the phase-plane trajectory and determine the direction of trajectory of model of battle.

