Total No. of Printed Pages-7

1 SEM TDC MTH M 1

2021

(Held in January/February, 2022)

MATHEMATICS

(Major)

Course: 101

(Classical Algebra, Trigonometry and Vector Calculus)

Full Marks: 80
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Classical Algebra)

- 1. (a) Write the limit point of the sequence $\{1, 3, 1, 6, 1, 9, \dots\}$.
 - (b) Write when a sequence is called bounded sequence.

(Turn Over)

1

Prove that a sequence cannot converge (c) to more than one limit.

Or

Discuss the convergence of the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{n}$

Discuss the convergence of the sequence (d) $\{S_n\}$, where $S_n = \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}, \forall n \in \mathbb{N}$.

Or

Find the limit of $\frac{1+3+5+\cdots+(2n-1)}{n^2}$.

- **2.** (a) Write the necessary condition convergence of an infinite series $\sum u_n$. 1
 - Write the statement of comparison test. (b) 2
 - (c) State the principle of Leibnitz's test of an alternating series. 2
 - (d) Test the convergence of the following series:

$$\frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \cdots$$

Show that the series $\sum_{n=1}^{\infty} does$ converge.

(e) Prove that a positive term series converges if and only if the sequence of its partial sums is bounded.

5

3. (a) Write the transformed equation of $7x^3 + 2x^2 + 3 = 0$ to solve by Cardan's method.

1 .

(b) Every equation of odd degree has only complex roots. State true or false.

1

(c) Write the nature of the roots of the equation $x^3 + px + q = 0$, if p and q are positive.

2

(d) If α , β , γ are the roots of the equation $6x^3 - 11x^2 - 3x + 2 = 0$, and are in harmonic progression, then find the value of $\gamma\alpha$.

3

(e) Solve the following by Cardan's method: 5

$$x^3 - 6x - 9 = 0$$

Or

If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $\alpha - \frac{1}{\beta \gamma}$, $\beta - \frac{1}{\alpha \gamma}$, $\gamma - \frac{1}{\alpha \beta}$.

(f) Find the sum of the fourth powers of the roots of $x^3 - x - 1 = 0$.

(4)

GROUP—B (Trigonometry)

4. (a) Write the value of
$$\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}$$
.

(b) Write the roots of the equation
$$x^2 - 2x \cos \theta + 1 = 0$$
.

Find all the values of $(1+i)^{\frac{1}{3}}$.

Expand
$$\cos^3 x$$
 in powers of x.

(d)

 $\sin\alpha + \sin\beta + \sin\gamma = \cos\alpha + \cos\beta + \cos\gamma = 0$

 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$

If
$$(1+x)^n = P_0 + P_1 x + P_2 x^2 + \cdots$$
, then show that $P_0 - P_2 + P_4 - \cdots = 2^{\frac{n}{2}} \cos \frac{n\pi}{4}$.

22P/473

(Continued)

1

1

3

5. Show that

$$\log(a+ib) = \log\sqrt{a^2+b^2} + i\tan^{-1}\frac{b}{a}$$

Or

Show that $\log i = i \frac{\pi}{2} (4n + 1)$.

6. (a) Write the value of the series $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$

(b) Show that

$$\frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} + \frac{1}{9 \cdot 11} + \dots = \frac{\pi}{8}$$

Or

Find the sum of the inifinite series $1 - \frac{1}{3^2} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \cdots \text{ up to } \infty.$

7. (a) Choose the correct answer: $\sin h^{-1}x$ is equal to

(i) $i \sin^{-1}(ix)$

(ii) $-i\sin^{-1}(ix)$

(iii) $-\sin^{-1}(ix)$

(iv) $-\sin^{-1}x$

5

1

3

- (b) If $\cos^{-1}(x+iy) = A+iB$, then show that $x = \cos A \cos hB$.
- (c) Obtain the sum of the series $\sin \alpha + \frac{1}{2} \sin 2\alpha + \frac{1}{2^2} \sin 3\alpha + \cdots$

Or

Separate $\sin^{-1}(x+iy)$ into real and imaginary parts.

GROUP—C (Vector Calculus)

- 8. (a) Find $\frac{\partial}{\partial x}(x^3\hat{i}+y^2\cos x\hat{j}+\sin^2 x\hat{k})$.
 - (b) Let $\vec{V} = x^2 y \hat{i} + 2y^3 \hat{j} + 3z^4 \hat{k}$. Find $\nabla \cdot \vec{V}$ at (1, 1, 1).
 - (c) Prove that $\nabla \times (\phi \overrightarrow{A}) = (\nabla \phi) \times \overrightarrow{A} + \phi (\nabla \times \overrightarrow{A})$.

Or

Prove that $\nabla \cdot \left(\frac{\vec{r}}{r^3}\right) = 0$.

(d) Define directional derivative of a scalar function.

2

1

2

5

2

(e) Prove that
$$\nabla f(r) = \frac{f'(r)\vec{r}}{r}$$
.

Or

Prove that

$$\nabla \cdot (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{B} \cdot (\nabla \times \overrightarrow{A}) - \overrightarrow{A} \cdot (\nabla \times \overrightarrow{B})$$