1 SEM TDC MTMH (CBCS) C 1

2021

(Held in January/February, 2022)

MATHEMATICS

- (+x + SuE + wx (Core)

Paper: C-1

(Calculus)

Full Marks: 60

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Write the value of $\frac{d}{dx}(\cosh x)$.
 - (b) Inverse hyperbolic sine is symmetric about a line. Write that line.
 - (c) Write the value of y_n , if $y = \cos(4x + 3)$. 1
 - (d) Define point of inflection. 1
 - (e) Find $\frac{d}{dx}(\tanh\sqrt{1+x^2})$. 2
 - (f) Show that sinhx is an increasing function of x.

1

SEM TOC MTMH (CBCS) C

(g) Show that $y = x^2$ is concave up on $(-\infty, \infty)$.

2

4

3

4

4

(Candi

- (h) Show that $\operatorname{cosech}^{-1} x = \sinh^{-1} \frac{1}{x}$.

 Or

 Find the asymptotes of $x^3 + 2x^2y xy^2 2y^3 + 3xy + 3y^2 + x + 1 = 0$
- (i) Find y_n , if $y = \sin^3 x$. 3

 Or

 Find y_n , if $y = x^3 \sin x$.
- (i) Evaluate (any one): (i) $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$
 - (ii) $\lim_{x \to \frac{\pi}{2}} \frac{\tan 5x}{\tan x}$
- 2. (a) Find $\int \tan^5 x \, dx$.

Or
Evaluate $\int_0^1 x^2 (1-x)^{\frac{3}{2}} dx.$

- (b) Obtain the reduction formula for $\int \sin^n x \, dx$
- (c) Obtain the reduction formula for $\int x^n e^{ax} dx$

Or

Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3about the line x = 3.

(d) Find the volume of the solid generated by revolving the region bounded by the curves and lines y = x, $y = -\frac{x}{2}$, x = 2 about the y-axis.

3. (a) Write the equation $x^2 + y^2 = 1$ in parametric form.

(b) A function y = f(x) is defined on [a, b]. Write the domain of the function after given a natural parametrization

x = t, y = f(t)

(c) Write the parametric formula for $\frac{d^2y}{dx^2}$. 1

(d) Write the equivalent Cartesian equation of the polar equation $r \cos \theta = 2$.

- (e) Find the eccentricity of the ellipse $2x^2 + y^2 = 2$.
- (f) Find the polar equation of xy = 1. 2
- (g) Find the Cartesian equation from the parametric equation $x = 4 \cot t, \ y = 2 \sin t, \ 0 \le t \le 2\pi$

4

1

1

(h) Find a parametrization for the curve having the lower half of the parabola $x-1=y^2$.

Or

Find an equation for the line tangent to the curve $x = 2\cos t$, $y = 2\sin t$ at the point $t = \frac{\pi}{4}$.

- 4. (a) Define limit of a vector valued function.
 - (b) Let the position of a moving particle is given by

 $\overrightarrow{r}(t) = (\sec t)\hat{i} + (\tan t)\hat{j} + \frac{t^3}{3}\hat{k}$

Find the acceleration at any time t.

(c) Evaluate the integral

 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} [(\sin t)\hat{i} + (1 + \cos t)\hat{j} + (\sec^2 t)\hat{k}] dt$

1

2

3

1

- (d) Write the value of $[\vec{a} \ \vec{b} \ \vec{a}]$.
- (e) Let $\overrightarrow{U}(t)$ and $\overrightarrow{V}(t)$ are differentiable vector function of t. Show that

$$\frac{d}{dt}(\vec{U}\cdot\vec{V}) = \vec{U}'\cdot\vec{V} + \vec{U}\cdot\vec{V}'$$

Or

Find the normal component of acceleration of a moving particle.

* * *