3 SEM TDC CHM M 1

2021

(March)

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry—I)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

1×5=5

- (a) The common oxidation state of lanthanides is
 - (i) +2
 - (ii) +3
 - (iii) +4
 - (iv) +1

- (b) The spectroscopic free ion ground term for d^1 -configuration is
 - (i) 5 D
 - (ii) ³ P
 - (iii) ²D
 - (iv) ^{1}S
- (c) The complex ion not obeying EAN rule is
 - (i) [Cr(CO)4]4-
 - (ii) [Fe(CN)6]4-
 - (iii) [Pt(NH₃)₄]²⁺
 - (iv) None of the above
- (d) Porphyrin is a/an
 - (i) ambidentate ligand
 - (ii) macrocyclic ligand
 - (iii) chelating ligand
 - (iv) polydentate ligand

(e) The increasing order of the strength of the ligands I-, CO, Cl- and H2O in the spectrochemical series is

- (iv) None of the above
- 2. Answer any five of the following questions:

 $3 \times 5 = 15$

(a) What is ambidentate ligand? Write the structural formula of two compounds formed by an ambidentate ligand. Also name them according to IUPAC system.

1+1+1=3

- Ni(CO)₄ and [Ni(CN)₄]²⁻ have different (b) geometry but same magnetic property. Explain. 11/2+11/2=3
- (c) Write the IUPAC names of the following: 1×3=3
 - (i) K[Pt(C2H4)Cl3]
 - (ii) [Co(NH₃)₅(ONO)]SO₄
 - (iii) $[(NH_3)_5Cr OH Cr(NH_3)_5]Cl_5$

- (d) Give the structural formulae of the following compounds: 1×3=3
 - (i) Pentaammineazidocobalt (III) sulphate
 - (ii) Potassium pentachlorido osmate (VI)
 - (iii) trans-dichlorido bis-(triphenyl phosphine) palladium(II)
- (e) Define stereoisomerism. Discuss the stereoisomerism exhibited by the complex [Cr(gly)3]. 1+2=3
- (f) Calculate CFSE (in Δ_0 -unit) for a d^7 ion in octahedral and tetrahedral complexes. $1\frac{1}{2}+1\frac{1}{2}=3$
- **3.** Answer the following questions: 3+3+4=10
 - (a) Draw the Orgel diagrams for the $[\text{Ti}(H_2O)_6]^{3+}$ ion. Assign the possible (d-d) transition. 2+1=3
 - (b) What is Mulliken symbol? Define A, B,
 E and T.
 1+2=3
 - (c) What is EAN rule? Find out the EAN for the following complexes: 1+3=4

 (i) [Mn(CO)(NO)₂]
 - (ii) [FeCl₄]
 - (iii) [Fe(C₅H₅)₂]

- 4. (a) What is base hydrolysis reaction?

 Discuss the kinetics of the base hydrolysis reaction of an octahedral cobalt complex.

 1+3=4
 - (b) Explain $S_N 1$ and $S_N 2$ mechanisms briefly for ligand replacement reactions.

11/2+11/2=3

5. Answer any two of the following questions:

21/2×2=5

- (a) What do you mean by inert and labile complexes? Explain the cause of inertness in the light of VBT. 1+1½=2½
- (b) Write a note on acid hydrolysis of cobalt(III) compounds with a suitable example. 21/2
- (c) Discuss the mechanism of the following reaction: 2½

 $[L_5MX] \xrightarrow{\operatorname{slow}} [L_5M \underset{Y}{\overset{X}{\smile}}] \xrightarrow{\operatorname{fast}} [L_5MY] + X$

6. Answer any *three* of the following questions:

2×3=6

- (a) What are the problems in the separation of lanthanides from one another?
- (b) Sm²⁺ is a good reducing agent and Ce⁴⁺ is a good oxidizing agent. Explain.

- (c) Discuss two points of difference between the lanthanides and actinides.
- (d) Zr(Z = 40) and Hf(Z = 72) have almost the same value of atomic radii. Explain.

**